CDPM: Convolutional Deformable Part Models for Semantically Aligned Person Re-Identification
نویسندگان
چکیده
منابع مشابه
Convolutional LSTM Networks for Video-based Person Re-identification
In this paper, we present an end-to-end approach to simultaneously learn spatio-temporal features and corresponding similarity metric for video-based person re-identification. Given the video sequence of a person, features from each frame that are extracted from all levels of a deep convolutional network can preserve a higher spatial resolution from which we can model finer motion patterns. The...
متن کاملThree-Stream Convolutional Networks for Video-based Person Re-Identification
This paper aims to develop a new architecture that can make full use of the feature maps of convolutional networks. To this end, we study a number of methods for video-based person re-identification and make the following findings: 1) Max-pooling only focuses on the maximum value of a receptive field, wasting a lot of information. 2) Networks with different streams even including the one with t...
متن کاملPersonNet: Person Re-identification with Deep Convolutional Neural Networks
In this paper, we propose a deep end-to-end neural network to simultaneously learn high-level features and a corresponding similarity metric for person re-identification. The network takes a pair of raw RGB images as input, and outputs a similarity value indicating whether the two input images depict the same person. A layer of computing neighborhood range differences across two input images is...
متن کاملPart-based spatio-temporal model for multi-person re-identification
0167-8655/$ see front matter 2011 Elsevier B.V. A doi:10.1016/j.patrec.2011.09.005 ⇑ Corresponding author. E-mail addresses: [email protected] (A. Beda h.edu (S.K. Shah). In this paper we propose an adaptive part-based spatio-temporal model that characterizes person’s appearance using color and facial features. Face image selection based on low level cues is used to select usable face images...
متن کاملDeep Representation Learning with Part Loss for Person Re-Identification
Learning discriminative representations for unseen person images is critical for person Re-Identification (ReID). Most of current approaches learn deep representations in classification tasks, which essentially minimize the empirical classification risk on the training set. As shown in our experiments, such representations commonly focus on several body parts discriminative to the training set,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2020
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2019.2959923